Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 676: 141-148, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37516031

RESUMO

Cation diffusion facilitators (CDFs) are a large family of divalent metal transporters with broad specificities that contribute to intracellular metal homeostasis and toxicity in bacterial pathogens. Streptococcus pyogenes (Group A Streptococcus [GAS]) expresses two homologous CDF efflux transporters, MntE and CzcD, which selectively transport Mn and Zn, respectively. We discovered that the MntE- and CzcD-deficient strains exhibited a marked decrease in the viability of macrophage-differentiated THP-1 cells and neutrophils. In addition, the viability of mice infected with both deficient strains markedly increased. Consistent with a previous study, our results suggest that MntE regulates the PerR-dependent oxidative stress response by maintaining intracellular Mn levels and contributing to the growth of GAS. The maturation and proteolytic activity of streptococcal cysteine protease (SpeB), an important virulence factor in GAS, has been reported to be abrogated by zinc and copper. Zn inhibited the maturation and proteolytic activity of SpeB in the culture supernatant of the CzcD-deficient strain. Furthermore, Mn inhibited SpeB maturation and proteolytic activity in a MntE-deficient strain. Since the host pathogenicity of the SpeB-deficient strain was significantly reduced, maintenance of intracellular manganese and zinc levels in the GAS via MntE and CzcD may not only confer metal resistance to the bacterium, but may also play an essential role in its virulence. These findings provide new insights into the molecular mechanisms of pathogenicity, which allow pathogens to survive under stressful conditions associated with elevated metal ion concentrations during host infection.


Assuntos
Evasão da Resposta Imune , Streptococcus pyogenes , Animais , Camundongos , Streptococcus pyogenes/metabolismo , Metais/metabolismo , Zinco/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cátions Bivalentes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
J Biol Chem ; 299(9): 104927, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330175

RESUMO

Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.


Assuntos
Anticorpos Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Receptores de Superfície Celular , Anticorpos de Domínio Único , Humanos , Antibacterianos/farmacologia , Heme/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/uso terapêutico , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Anticorpos de Domínio Único/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Antígenos de Bactérias/imunologia , Anticorpos Antibacterianos/genética , Anticorpos Antibacterianos/imunologia , Camelídeos Americanos , Animais , Ligação Proteica/efeitos dos fármacos , Modelos Moleculares , Simulação de Dinâmica Molecular
3.
Front Cell Infect Microbiol ; 11: 711144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350134

RESUMO

Most bacteria naturally release spherical lipid-bilayered extracellular vesicles (EVs) containing proteins, nucleic acids, and virulence-related molecules, thus contributing to diverse biological functions including transport of virulence factors. The group A streptococcus, Streptococcus pyogenes (GAS), a major human pathogen, also releases EVs; however, it remains unclear how GAS EVs interact physiologically and pathologically with host cells, and what the differences are between invasive and non-invasive strains. The proteome profile in this study revealed that GAS EVs enclosed many virulence-related proteins such as streptolysin O and NAD-glycohydrolase, facilitating their pathogenicity, and invasive GAS EVs were more abundant than non-invasive counterparts. In terms of biological effects, invasive GAS EVs showed slo-dependent cytotoxic activity and the induction of cytokine expression, contributing to GAS pathogenicity directly. Although non-invasive GAS EVs did not show cytotoxic activity, they may be utilized as a means to prevent antibacterial mechanisms such as autophagy, leading to enhancement of their own survival in the intracellular environment after the infection. These results suggest that invasive and non-invasive GAS EVs play different roles in GAS infection strategy and pathogenicity. Our findings also indicate that EVs could be a key factor for GAS pathogenicity in GAS-host interactions.


Assuntos
Vesículas Extracelulares , Monócitos/microbiologia , Streptococcus pyogenes , Proteínas de Bactérias , Humanos , Inflamação , NAD+ Nucleosidase , Virulência , Fatores de Virulência
4.
Biochem Biophys Res Commun ; 565: 1-7, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077827

RESUMO

Streptococcus pyogenes causes a wide range of human infections. Currently, antibiotics are the main treatment for S. pyogenes infection, but serious anti-microbial resistance requires alternative treatment options. To develop a novel strategy for treatment, we physicochemically characterized SPs0871, a putative maltose/maltodextrin-binding protein that is thought to have important roles in the pathogenesis of invasive streptococci. We obtained a variable domain of heavy chain of heavy-chain antibody, the smallest unit of an antibody, which specifically binds to SPs0871. Although the VHH completely inhibited the binding of maltodextrins to SPs0871, the inhibition did not lead to growth suppression of the bacteria. Our results provide important insights for development of VHH as an anti-streptococcal therapeutic.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Cadeias Pesadas de Imunoglobulinas/farmacologia , Polissacarídeos/antagonistas & inibidores , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/química , Cadeias Pesadas de Imunoglobulinas/química , Testes de Sensibilidade Microbiana , Polissacarídeos/química , Streptococcus pyogenes/química
5.
Biochem Biophys Res Commun ; 566: 177-183, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34129965

RESUMO

Streptococcus pyogenes (Group A Streptococcus, GAS) causes a range of human diseases, including life-threatening and severe invasive GAS infections, such as streptococcal toxic shock syndrome (STSS). Several antibiotics, including penicillin, are effective against GAS. Still, invasive GAS diseases have a high mortality rate (>30%). Clinical isolates from STSS patients show higher expression of pore-forming streptolysin O (SLO). Thus, SLO is an important pathogenic factor for GAS and may be an effective target for treatment of GAS disease. We succeeded in obtaining a single-chain variable fragment (scFv) SLO-I4 capable of recognizing SLO, which significantly inhibited GAS-induced cell lytic activity in erythrocytes, macrophages, and epithelial cells. In epithelial cells, SLO-I4 significantly reduced SLO-mediated endosomal membrane damage, which consequently prevented bacterial escape from the endosome. The effectiveness of anti-SLO scFv in counteracting SLO function suggests that it might be beneficial against GAS infections.


Assuntos
Anticorpos de Cadeia Única/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Estreptolisinas/imunologia , Proteínas de Bactérias/imunologia , Células HeLa , Hemólise , Humanos
6.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563838

RESUMO

Group A Streptococcus (GAS; Streptococcus pyogenes) is a major human pathogen that causes streptococcal pharyngitis, skin and soft tissue infections, and life-threatening conditions such as streptococcal toxic-shock syndrome. During infection, GAS not only invades diverse host cells but also injects effector proteins such as NAD-glycohydrolase (Nga) into the host cells through a streptolysin O (SLO)-dependent mechanism without invading the cells; Nga and SLO are two major virulence factors that are associated with increased bacterial virulence. Here, we have shown that the invading GAS induces fragmentation of the Golgi complex and inhibits anterograde transport in the infected host cells through the secreted toxins SLO and Nga. GAS infection-induced Golgi fragmentation required both bacterial invasion and SLO-mediated Nga translocation into the host cytosol. The cellular Golgi network is critical for the sorting of surface molecules and is thus essential for the integrity of the epithelial barrier and for the immune response of macrophages to pathogens. In epithelial cells, inhibition of anterograde trafficking by invading GAS and Nga resulted in the redistribution of E-cadherin to the cytosol and an increase in bacterial translocation across the epithelial barrier. Moreover, in macrophages, interleukin-8 secretion in response to GAS infection was found to be suppressed by intracellular GAS and Nga. Our findings reveal a previously undescribed bacterial invasion-dependent function of Nga as well as a previously unrecognized GAS-host interaction that is associated with GAS pathogenesis.IMPORTANCE Two prominent virulence factors of group A Streptococcus (GAS), streptolysin O (SLO) and NAD-glycohydrolase (Nga), are linked to enhanced pathogenicity of the prevalent GAS strains. Recent advances show that SLO and Nga are important for intracellular survival of GAS in epithelial cells and macrophages. Here, we found that invading GAS disrupts the Golgi complex in host cells through SLO and Nga. We show that GAS-induced Golgi fragmentation requires bacterial invasion into host cells, SLO pore formation activity, and Nga NADase activity. GAS-induced Golgi fragmentation results in the impairment of the epithelial barrier and chemokine secretion in macrophages. This immune inhibition property of SLO and Nga by intracellular GAS indicates that the invasion of GAS is associated with virulence exerted by SLO and Nga.


Assuntos
Células Epiteliais/microbiologia , Complexo de Golgi/patologia , Interações Hospedeiro-Patógeno/genética , NAD+ Nucleosidase/genética , Streptococcus pyogenes/patogenicidade , Estreptolisinas/genética , Células A549 , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoplasma/microbiologia , Complexo de Golgi/genética , Complexo de Golgi/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interleucina-8/imunologia , NAD+ Nucleosidase/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/imunologia , Estreptolisinas/metabolismo , Células THP-1 , Fatores de Virulência
7.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060279

RESUMO

Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that occasionally causes severe and life-threatening invasive diseases. Here, we report the complete genome sequences of four GAS strains of three M types, which were isolated from patients with severe invasive disease in Japan.

8.
Sci Rep ; 10(1): 3251, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094510

RESUMO

Group A Streptococcus (GAS) secretes deoxyribonucleases and evades neutrophil extracellular killing by degrading neutrophil extracellular traps (NETs). However, limited information is currently available on the interaction between GAS and NETs in the pathogenicity of GAS pharyngitis. In this study, we modified a mouse model of GAS pharyngitis and revealed an essential role for DNase in this model. After intranasal infection, the nasal mucosa was markedly damaged near the nasal cavity, at which GAS was surrounded by neutrophils. When neutrophils were depleted from mice, GAS colonization and damage to the nasal mucosa were significantly decreased. Furthermore, mice infected with deoxyribonuclease knockout GAS mutants (∆spd, ∆endA, and ∆sdaD2) survived significantly better than those infected with wild-type GAS. In addition, the supernatants of digested NETs enhanced GAS-induced cell death in vitro. Collectively, these results indicate that NET degradation products may contribute to the establishment of pharyngeal infection caused by GAS.


Assuntos
DNA/química , Armadilhas Extracelulares , Faringite/microbiologia , Faringe/microbiologia , Infecções Estreptocócicas/patologia , Animais , Apoptose , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Neutrófilos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus pyogenes
9.
Nat Commun ; 11(1): 770, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034138

RESUMO

Invading microbial pathogens can be eliminated selectively by xenophagy. Ubiquitin-mediated autophagy receptors are phosphorylated by TANK-binding kinase 1 (TBK1) and recruited to ubiquitinated bacteria to facilitate autophagosome formation during xenophagy, but the molecular mechanism underlying TBK1 activation in response to microbial infection is not clear. Here, we show that bacterial infection increases Ca2+ levels to activate TBK1 for xenophagy via the Ca2+-binding protein TBC1 domain family member 9 (TBC1D9). Mechanistically, the ubiquitin-binding region (UBR) and Ca2+-binding motif of TBC1D9 mediate its binding with ubiquitin-positive bacteria, and TBC1D9 knockout suppresses TBK1 activation and subsequent recruitment of the ULK1 complex. Treatment with a Ca2+ chelator impairs TBC1D9-ubiquitin interactions and TBK1 activation during xenophagy. TBC1D9 is also recruited to damaged mitochondria through its UBR and Ca2+-binding motif, and is required for TBK1 activation during mitophagy. These results indicate that TBC1D9 controls TBK1 activation during xenophagy and mitophagy through Ca2+-dependent ubiquitin-recognition.


Assuntos
Autofagia/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Infecções Estreptocócicas/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Citosol/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macroautofagia/fisiologia , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Streptococcus pyogenes/patogenicidade , Ubiquitina/metabolismo
10.
Autophagy ; 16(2): 334-346, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31177902

RESUMO

Autophagy selectively targets invading bacteria to defend cells, whereas bacterial pathogens counteract autophagy to survive in cells. The initiation of canonical autophagy involves the PIK3C3 complex, but autophagy targeting Group A Streptococcus (GAS) is PIK3C3-independent. We report that GAS infection elicits both PIK3C3-dependent and -independent autophagy, and that the GAS effector NAD-glycohydrolase (Nga) selectively modulates PIK3C3-dependent autophagy. GAS regulates starvation-induced (canonical) PIK3C3-dependent autophagy by secreting streptolysin O and Nga, and Nga also suppresses PIK3C3-dependent GAS-targeting-autophagosome formation during early infection and facilitates intracellular proliferation. This Nga-sensitive autophagosome formation involves the ATG14-containing PIK3C3 complex and RAB1 GTPase, which are both dispensable for Nga-insensitive RAB9A/RAB17-positive autophagosome formation. Furthermore, although MTOR inhibition and subsequent activation of ULK1, BECN1, and ATG14 occur during GAS infection, ATG14 recruitment to GAS is impaired, suggesting that Nga inhibits the recruitment of ATG14-containing PIK3C3 complexes to autophagosome-formation sites. Our findings reveal not only a previously unrecognized GAS-host interaction that modulates canonical autophagy, but also the existence of multiple autophagy pathways, using distinct regulators, targeting bacterial infection.Abbreviations: ATG5: autophagy related 5; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; BECN1: beclin 1; CALCOCO2: calcium binding and coiled-coil domain 2; GAS: group A streptococcus; GcAV: GAS-containing autophagosome-like vacuole; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; Nga: NAD-glycohydrolase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; RAB: RAB, member RAS oncogene GTPases; RAB1A: RAB1A, member RAS oncogene family; RAB11A: RAB11A, member RAS oncogene family; RAB17: RAB17, member RAS oncogene family; RAB24: RAB24, member RAS oncogene family; RPS6KB1: ribosomal protein S6 kinase B1; SLO: streptolysin O; SQSTM1: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WIPI2: WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Células HeLa , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , NAD+ Nucleosidase/metabolismo , Agregados Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Puromicina/farmacologia , Estreptolisinas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-31850237

RESUMO

Group A Streptococcus (GAS) invades epithelial cells causing persistent infection. GAS has a variety of effector proteins that modulate host systems to affect their survival in host environments. The main effector proteins of GAS are NAD-glycohydrolase (Nga) and streptolysin O (SLO). Although Nga has NADase activity and shows SLO-dependent cytotoxicity, some clinical isolates harbor NADase-inactive subtypes of Nga, and the function of NADase-inactive Nga is still unclear. In this study, we found that deletion of nga enhanced the internalization of GAS into HeLa and Ca9-22 cells. Amino acid substitution of Nga R289K/G330D (NADase-inactive) does not enhance GAS invasion, suggesting that Nga may inhibit the internalization of GAS into host cells in an NADase-independent manner. Moreover, double deletion of slo and nga showed similar invasion percentages compared with wild-type GAS, indicating the important role of SLO in the inhibition of GAS invasion by Nga. Furthermore, enhanced internalization of the nga deletion mutant was not observed in Cav1-knockout HeLa cells. Altogether, these findings demonstrate an unrecognized NADase-independent function of Nga as a negative regulator of CAV1-mediated internalization into epithelial cells.


Assuntos
Caveolina 1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , NAD+ Nucleosidase/metabolismo , Streptococcus pyogenes/enzimologia , Proteínas de Bactérias/metabolismo , Endocitose , Técnicas de Inativação de Genes , Humanos , Hidrólise , Modelos Biológicos , Ligação Proteica , Estreptolisinas/metabolismo
12.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753944

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen causing nosocomial infections, and the clinical manifestations of MRSA range from asymptomatic colonization of the nasal mucosa to soft tissue infection to fulminant invasive disease. Here, we report the complete genome sequences of eight MRSA strains isolated from patients in Japan.

13.
BMC Microbiol ; 19(1): 24, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691408

RESUMO

BACKGROUND: Group A Streptococcus (GAS) is a major human pathogen, which is associated with a wide spectrum of invasive diseases, such as pharyngitis, scarlet fever, rheumatic fever, and streptococcal toxic shock syndrome (STSS). It is hypothesized that differences in GAS pathogenicity are related to the acquisition of diverse bacteriophages (phages). Nevertheless, the GAS genome also harbors clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes, which play an important role in eliminating foreign DNA, including those of phages. However, the structure of prophages in GAS strains is mosaic, and the phylogenetic relationship between prophages and CRISPR is not clear. In this study, we analyzed CRISPR and prophage structure using 118 complete genome sequences of GAS strains to elucidate the relationship between two genomic elements. Additionally, phylogenetic and M-type analyses were performed. RESULTS: Of the 118 GAS strains, 80 harbored type I-C and/or II-A CRISPR/cas loci. A total of 553 spacer sequences were identified from CRISPR/cas loci and sorted into 229 patterns. We identified and classified 373 prophages into 14 groups. Some prophage groups shared a common integration site, and were related to M-type. We further investigated the correlation between spacer sequences and prophages. Of the 229 spacer sequence patterns, 203 were similar to that of other GAS prophages. No spacer showed similarity with that of a specific prophage group with mutL integration site. Moreover, the average number of prophages in strains with type II-A CRISPR was significantly less than that in type I-C CRISPR and non-CRISPR strains. However, there was no statistical difference between the average number of prophages in type I-C strains and that in non-CRISPR strains. CONCLUSIONS: Our results indicated that type II-A CRISPR may play an important role in eliminating phages and that the prophage integration site may be an important criterion for the acceptance of foreign DNA by GAS. M type, spacer sequence, and prophage group data were correlated with the phylogenetic relationships of GAS. Therefore, we hypothesize that genetic characteristics and/or phylogenetic relationships of GAS may be estimated by analyzing its spacer sequences.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Filogenia , Prófagos/classificação , Streptococcus pyogenes/genética , Evolução Molecular , Genoma Bacteriano , Streptococcus pyogenes/virologia , Integração Viral
14.
Autophagy ; 15(3): 466-477, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30290718

RESUMO

Macroautophagy/autophagy plays an important role in the immune response to invasion by intracellular pathogens such as group A Streptococcus (GAS; Streptococcus pyogenes). We previously identified RAB30, a Golgi-resident GTPase, as a novel anti-bacterial autophagic regulator in the formation of GAS-containing autophagosome-like vacuoles (GcAVs); however, the precise mechanism underlying this process remains elusive. Here, we elucidate a novel property of RAB30: the ability to recruit PI4KB (phosphatidylinositol 4-kinase beta) to the Golgi apparatus and GcAVs. We found that trans-Golgi network (TGN) vesicles were incorporated into GcAVs via RAB30 to promote GcAV formation. Moreover, depletion of phosphatidylinositol-4-phosphate (PtdIns4P), a phosphatidylinositol enriched in the TGN, by wortmannin and phenylarsine oxide, followed by subsequent repletion with exogenous PtdIns4P revealed that PtdIns4P is crucial for GcAV formation. Furthermore, we identify an interaction between RAB30 and PI4KB, in which the knockdown of RAB30 decreased the localization of PI4KB to the TGN and GcAVs. Finally, PI4KB knockout suppressed autophagy by inhibiting GcAV formation, resulting in the increased survival of GAS. Our results demonstrate a novel autophagosomal formation mechanism involving coordinative functions of RAB30 and PI4KB distinct from those utilized in canonical autophagy. Abbreviations: GAS: group A Streptococcus; GcAVs: GAS-containing autophagosome-like vacuoles; PI4KB: phosphatidylinositol 4-kinase beta; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns5P: phosphatidylinositol-5-phosphate; SLO: streptolysin O; TGN: trans-Golgi network; TGOLN2: trans-golgi network protein 2; PH: plekstrin homology; OSBP: oxysterol binding protein.


Assuntos
1-Fosfatidilinositol 4-Quinase/metabolismo , Autofagossomos/microbiologia , Complexo de Golgi/metabolismo , Streptococcus pyogenes/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , Autofagossomos/metabolismo , Autofagia/genética , Complexo de Golgi/microbiologia , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Vacúolos/metabolismo , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/antagonistas & inibidores , Proteínas rab de Ligação ao GTP/genética , Rede trans-Golgi/microbiologia
15.
Cell Microbiol ; 21(4): e12981, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30428163

RESUMO

Xenophagy, also known as antibacterial autophagy, plays a role in host defence against invading pathogens such as Group A Streptococcus (GAS) and Salmonella. In xenophagy, autophagy receptors are used in the recognition of invading pathogens and in autophagosome maturation and autolysosome formation. However, the mechanism by which autophagy receptors are regulated during bacterial infection remains poorly elucidated. In this study, we identified LAMTOR2 and LAMTOR1, also named p14 and p18, respectively, as previously unrecognised xenophagy regulators that modulate the autophagy receptor TAX1BP1 in response to GAS and Salmonella invasion. LAMTOR1 was localized to bacterium-containing endosomes, and LAMTOR2 was recruited to bacterium-containing damaged endosomes in a LAMTOR1-dependent manner. LAMTOR2 was dispensable for the formation of autophagosomes targeting damaged membrane debris surrounding cytosolic bacteria, but it was critical for autolysosome formation, and LAMTOR2 interacted with the autophagy receptors NBR1, TAX1BP1, and p62 and was necessary for TAX1BP1 recruitment to pathogen-containing autophagosomes. Notably, knockout of TAX1BP1 caused a reduction in autolysosome formation and subsequent bacterial degradation. Collectively, our findings demonstrated that the LAMTOR1/2 complex is required for recruiting TAX1BP1 to autophagosomes and thereby facilitating autolysosome formation during bacterial infection.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macroautofagia/fisiologia , Proteínas de Neoplasias/metabolismo , Salmonella/patogenicidade , Western Blotting , Sistemas CRISPR-Cas/genética , Linhagem Celular , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macroautofagia/genética , Microscopia de Fluorescência , Proteínas de Neoplasias/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-30488027

RESUMO

Group A Streptococcus (GAS) can invade epithelial cells; however, these bacteria are targeted and eventually destroyed by autophagy. Members of the Nod-like receptor (NLR) family are thought to be critical for the autophagic response to invasive bacteria. However, the intracellular sensors within host cells that are responsible for bacterial invasion and the induction of autophagy are largely unknown. Thus, our aim was to examine the role of one such NLR, namely NLRX1, in invasion and autophagy during GAS infection. We found that GAS invasion was markedly increased in NLRX1 knockout cells. This led to the potentiation of autophagic processes such as autophagosome and autolysosome formation. NLRX1 was found to interact with Beclin 1 and UVRAG, members of Beclin1 complex, and knockout of these proteins inhibited invasion and autophagy upon GAS infection. Especially, NLRX1 interacted with Beclin 1 via its NACHT domain and this interaction was responsible for the NLRX1-mediated inhibition of invasion and autophagic processes including autophagosome and autolysosome formation during GAS infection. These findings demonstrate that NLRX1 functions as a negative regulator to inactivate the Beclin 1-UVRAG complex, which regulates invasion and autophagy during GAS infection. Thus, our study expands our knowledge of the role of NLRX1 during bacterial invasion and autophagy and could lead to further investigations to understand pathogen-host cell interactions, facilitating novel targeted therapeutics.


Assuntos
Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Proteínas Mitocondriais/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Autofagossomos/metabolismo , Proteína Beclina-1/genética , Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Células HeLa , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Lisossomos/metabolismo , Proteínas Mitocondriais/genética , Streptococcus pyogenes/patogenicidade , Proteínas Supressoras de Tumor/genética
17.
Autophagy ; 13(11): 1841-1854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29099277

RESUMO

Xenophagy, also known as antibacterial autophagy, functions as a crucial defense system that can utilize intracellular pattern recognition sensors, such as NLRP4, to recognize and selectively eliminate bacterial pathogens. However, little is known about how NLRP4 regulates xenophagy. Here, we report that NLRP4 binds ARHGDIA (Rho GDP dissociation inhibitor α) to regulate Rho GTPase signaling and facilitate actin-mediated xenophagy. Specifically, NLRP4 is recruited to Group A Streptococcus (GAS) and colocalizes with GAS-containing autophagosome-like vacuoles (GcAVs), where it regulates ARHGDIA-Rho GTPase recruitment to promote autophagosome formation. The interaction between NLRP4, ARHGDIA, and Rho GTPases is regulated by ARHGDIA Tyr156 phosphorylation, which acts as a gate to induce Rho-mediated xenophagy. Moreover, ARHGDIA and Rho GTPase are involved in actin-mediated ATG9A recruitment to phagophores, facilitating elongation to form autophagosomes. Collectively, these findings demonstrate that NLRP4 functions as a Rho receptor complex to direct actin dynamics regulating xenophagy.


Assuntos
Autofagossomos/microbiologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/imunologia , Proteínas de Membrana/metabolismo , Proteínas Repressoras/metabolismo , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Células HeLa , Humanos , Fosforilação , Transporte Proteico , Infecções Estreptocócicas/microbiologia , Vacúolos/microbiologia
18.
Biochem Biophys Res Commun ; 493(2): 1109-1114, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-28919415

RESUMO

Streptococcus pyogenes, an important pathogen that causes a wide range of diseases, possesses the sia gene cluster, which encodes proteins involved in the heme acquisition system. Although this system was previously described, the molecular mechanism of effective heme transfer remains to be elucidated. Here, we have characterized the interactions between heme and each domain of Streptococcal hemoprotein receptor (Shr) and Streptococcal heme-binding protein (Shp). Our kinetic and thermodynamic analyses suggested that effective heme transfer within this system is achieved not only by affinity-based transfer but also by the difference of the binding driving force. The biophysical characterization of the above-mentioned interaction will lead to an indication for the selection of the target for a chemical screening of inhibitors as novel antibacterial agents based on biophysical approaches.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Hemoglobinas/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/fisiologia , Proteínas Ligantes de Grupo Heme , Humanos , Modelos Moleculares , Ligação Proteica , Infecções Estreptocócicas/microbiologia , Termodinâmica
19.
PLoS One ; 12(1): e0170612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122066

RESUMO

Streptococcus pyogenes (group A Streptococcus, or GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS utilizes TCSs to sense and respond to environmental changes and adapts its pathogenic traits accordingly; however, many GAS TCSs and their interactions remain uncharacterized. Here, we elucidated the roles of a poorly characterized TCS, YvqEC, and a well-studied TCS, CovRS, in 2 different GAS strain SSI-1 and JRS4, respectively. Deletion of yvqE and yvqC in JRS4 resulted in lower cell viability and abnormality of cell division when compared to the wild-type strain under standard culture conditions, demonstrating an important role for YvqEC. Furthermore, a double-deletion of yvqEC and covRS in SSI-1 and JRS4 resulted in a significantly impaired ability to survive under various stress conditions, as well as an increased sensitivity to cell wall-targeting antibiotics compared to that observed in either single mutant or wild-type strains suggesting synergistic interactions. Our findings provide new insights into the impact of poorly characterized TCS (YvqEC) and potential synergistic interactions between YvqEC and CovRS and reveal their potential role as novel therapeutic targets against GAS infection.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Streptococcus pyogenes/metabolismo , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Fenótipo , Proteínas Repressoras/genética , Streptococcus pyogenes/genética
20.
PLoS One ; 12(1): e0170138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28085926

RESUMO

Anti-apoptotic Bcl-2 and Bcl-xL are proposed to regulate starvation-induced autophagy by directly interacting with Beclin 1. Beclin 1 is also thought to be involved in multiple vesicle trafficking pathways such as endocytosis by binding to Atg14L and UVRAG. However, how the interaction of Bcl-2 family proteins and Beclin 1 regulates anti-bacterial autophagy (xenophagy) is still unclear. In this study, we analyzed these interactions using Group A Streptococcus (GAS; Streptococcus pyogenes) infection as a model. GAS is internalized into epithelial cells through endocytosis, while the intracellular fate of GAS is degradation by autophagy. Here, we found that Bcl-xL but not Bcl-2 regulates GAS-induced autophagy. Autophagosome-lysosome fusion and the internalization process during GAS infection were promoted in Bcl-xL knockout cells. In addition, knockout of Beclin 1 phenocopied the internalization defect of GAS. Furthermore, UVRAG interacts not only with Beclin 1 but also with Bcl-xL, and overexpression of UVRAG partially rescued the internalization defect of Beclin 1 knockout cells during GAS infection. Thus, our results indicate that Bcl-xL inhibits GAS-induced autophagy directly by suppressing autophagosome-lysosome fusion and indirectly by suppressing GAS internalization via interaction with Beclin 1-UVRAG.


Assuntos
Proteína Beclina-1/fisiologia , Lisossomos/fisiologia , Streptococcus pyogenes/imunologia , Proteínas Supressoras de Tumor/fisiologia , Proteína bcl-X/fisiologia , Apoptose , Autofagossomos/ultraestrutura , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Endocitose/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Lisossomos/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...